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The transverse compression of oriented 
nylon and polyethylene extrudates 

S. A B D U L  JAWAD, I.M. WARD 
Department of Physics, University of Leeds, Leeds, UK 

A theoretical treatment is given for the total diametral compression of a transversely 
isotropic elastic cylinder under compression between parallel rigid plates under conditions 
of plane strain. Experimental results are presented for the compression of isotropic and 
oriented cylinders of nylon 6.6 and linear polyethylene (Rigidex). These results confirm 
that the theoretical treatment is valid to a good degree of approximation. In the case of 
linear polythylene, where data are presented for ultra-highly oriented extrudates, the 
results are of some interest with regard to the elastic properties of these unusual materials. 

1. Introduction 
The compression of elastic spheres or cylinders 
was first considered by Hertz [1] and has sub- 
sequently been studied extensively, in view of its 
importance in technological problems involving 
roller bearings and gear wheels (see, for example, 
[2] ). In general, discussion of the contact problem 
has been restricted in two ways. Firstly, only iso- 
tropic elastic spheres or cylinders have been con- 
sidered. With the development of synthetic fbres 
and extruded oriented polymers there is however 
considerable interest in applying the compression 
problem more widely to anisotropic solids. The 
compression of a transversely isotropic elastic 
cylinder was shown to be a simple extension of the 
original Hertz contact problem and used to deter- 
mine the transverse modulus of fibre monofila- 
ments [3 ,4] .  Secondly, usually only the contact 
width and stresses close to the contact zone are 
calculated. In this paper, the Hertz contact prob- 
lem will be extended to provide a solution for the 
total diametral compression of a transversely iso- 
tropic elastic cylinder under compression between 
parallel rigid plates. We have also undertaken 
measurements of the contact width and the total 
diametral compression for both isotropic and 
oriented rods to nylon 6.6 and linear polyethylene 
to confirm the validity of the theoretical treatment. 
For completeness, the measurements of contact 
width include data on linear polyethylene of very 
high extrusion ratios, where the samples were too 
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small for accurate determination of the total 
compression. The results can be considered in 
terms of the determination of the transverse 
modulus for these materials, which is also of con- 
siderable interest. 

2. Theory 
2.1. Introduction 
In considering the compression of a cylinder be- 
tween two rigid parallel planes, it is customary to 
follow the Hertz method and assume that the 
width of the contact strip is small compared with 
the dimensions of the contacting bodies. It is then 
only necessary to consider the actual contact area 
between the cylinder and one of the planes, and 
treat the problem as for two semi-infinite solids in 
contact under conditions of plane strain. This 
treatment enables the contact width to be calcul- 
ated in terms of the elastic constants, the applied 

load and the radius of the cylinder. It does, how- 
ever, only consider the deformations in the contact 
zone, and no attempt is made to satisfy the bound- 
ary conditions on the surface of the cylinder. 

In this paper the contraction of the cylinder 
along the diameter perpendicular to the planes of 
contact is considered. It is then necessary to con- 
sider the deformation outside the contact zone 
and to satisfy the boundary conditions on the 
surface of the cylinder. The situation under 
discussion is shown in Fig. 1. 
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2.2. Constitutive relations 
For a general elastic solid the relationships between stresses o i and strains e: are given by the generalized 
Hooke's law 

oi = cijej, (1) 

ej = SjiOi, (2)  

where ci: and Sji are the stiffness and compliance constants respectively and i, j take the values 1,2, 3 to 
6. For an isotropic solid there are only two independent elastic constants and Equation 2 reduces to 

/ \ 
/SI1 S12 S12 0 0 0 

0 1 s12 sll sl2 0 0 

sl2 sa2 sn 0 0 0 

0 0 0 2(sl l  --s12) 0 0 

0 0 0 0 2(Sll --S12) 0 

0 0 0 0 0 2(sll --s12)1 / 

ej = o~. (3) 

Expressing the stresses and strains in conventional Cartesian notation typical relationships take the 
form 

aUx 
exx - Ox - S l l O x x  -I-S12Oyy @ S12(lzz'  etc. 

for the compliance constants, and 

~Ux+ ~uy ~uz'~-z OXX = e l l  C12 ~"--'~C12 etc.  

for the stiffness constants. 
For an elastic solid showing transverse isotropy, the axis of transverse isotropy being the z-axis, 

there are five independent elastic constants and the equation corresponding to Equation 3 for an iso- 
tropic elastic solid takes the form 

Sll S12 S13 0 0 0 

I S12 sn s13 0 0 0 

I S 1 3  s13 s33 0 0 0 

ep = 0 ~ 0 0 s44 0 0 

0 0 0 s44 0 

0 0 0 0 2(Sll --S12) 

o o (4) 

F 

Figure 1 The compression problem. 

Since we are considering a problem of plane 
strain, uz = 0 and Uz, ur are functions of x and y 
only. 

In particular Oyz = Oz~ = 0, and 

~Uz 
- 0 .  ( 5 )  

~z 

For the isotropic cylinder Equation 5 gives 

--  S12 
ozz - (ox~ + Oyy), (6) 

$11 
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and for the transversely isotropic cylinder 

- -  S13 
Ozz - (Oxx + o~,,). (7) 

$33 

It will be noted that Equations 6 and 7 are ident- 
ical in form for the two cases. 

2.3. Equations of equilibrium and 
compatibi l i ty 

The equations of equilibrium are 

b~ I- b~xy = O, 
bx by 

bOXy @ bO yy  - -  0 ,  ( 8 )  

bx by 
and 

bOzz -- O. 
bz 

The compatibility conditions provide a further 
relationship involving Oxx and oyy. 

Rewriting Equation 8 in terms of the displace- 
ments, using the constitutive relations and the 
plane strain condition uz = 0, Ouz/bz = O, it may 
be shown that for this case of a two dimensional 
stress field, the transversely isotropic case is ident- 
ical to the isotropic case and we have 

by) 0. 

Furthermore 

Oxx -~- Oyy = (Cll + C12) ( ~  + bldyl V)' 
and it follows that in both the isotropic and 
transversely isotropic case 

V 2 (Oxx + oy,)  = O, (9) 

which is identical to the result for the compression 
of an isotropic cylinder. 

2.4. Boundary conditions and stress 
functions 

The results of Sections 2.2 and 2.3 show that the 
stress functions for axx, ayy and axy must satisfy 
Equations 8 and 9 and that azz is given in terms of 
axx and eyy by Equations 6 and 7 for the isotropic 
and transversely isotropic case, respectively. This 

suggests that the stress functions for the isotropic 
and transversely isotropic cases will take an ident- 
ical form, any difference depending only on the 
difference in compliance coefficients for the two 
cases, which affects the numerical value of ezz 
through Equation 6 or 7. 

The Hertz solution to the contact problem, 
assuming contact of two semi4nfinite solids, re- 
quires that the stress functions satisfy the follow- 
ing conditions in the contact zone. 

First it is assumed that to prevent interpenetra- 
tion the normal displacement of the cylinder with- 
in the contact zone - b  < x  < b  is of the form 

(uy)y= 0 = A + Bx.  
In addition the following stress conditions must 

be satisfied. In the contact zone when y = 0, the 
load per unit length of cylinder F = -- fb_ b oyy dx 
and o:r = 0. Outside the contact zone oyy = 0, 
when y = 0 and [x [ > b. It is also assumed that the 
stress functions oxx, o~,~,, etc. vanish at infinity. 

Hertz showed that these boundary conditions 
were satisfied by assuming that the stress distrib- 
ution over the contact zone was satisfied by stress 
functions of an elliptical form. 

A first approximation to the solution of the 
present problem would be to ignore satisfying the 
boundary conditions on the surface of the cylinder 
and accept the Hertz solution as valid throughout 
the cylinder. A better approximation is proposed 
along the following lines. 

Consider the deformation of the upper half of 
the cylinder bounded by the diameter A B  as 
shown in Fig. 1. Assume that there is a distributed 
load of the Hertzian form over the contact zone 
MN, but that the distributed load over the contact 
strip R S  can be replaced by a concentrated load F 
at Q. The justification for the latter assumption is 
that the stresses given by the Hertz solution clearly 
reduce to this when y >> b. 

For a cylinder under compression by concen- 
trated loads F at the two ends of a diameter, the 
condition of zero stress on the surface of the 
cylinder is met by applying an isotropic tension of 
magnitude F/TrR in the x - y  plane. This solution 
would also hold for symmetrically arranged 
distributed loads of total magnitude F. It would 
therefore appear to be a reasonable approximation 
to the case under present consideration. 

Along the diameter of the cylinder perpendic- 
ular to the plane of contact (i.e. the line x = 0) 
the stress functions obtained from the Hertz 
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solution [2, 5 -7]  are 

oxx _ --2Frrb2 2x/(b 2 + y 2 ) - - 2 y  x/(b 2--+y2); 

- 2 F  1 
% '  rr x/(b = +y2) -  (10) 

For a cylinder under compression by two concen- 
trated loads of magnitude F the stresses along the 
line x = 0 [8] are 

F 
Oxx = + rrR ' 

- - 2 F  2F F 
= + - - .  (11) 

oyy rr (2R--y)  try rrR 

The proposed solution which assumes a distributed 
load over the contact zone MN and a concentrated 
load at Q takes the form 

2F {2x/(b 2 +y2 )  
Oxx --  ~rb~ 

b 2 

O y y  - -  

2F 

F 
-2y x/(b 

(b 2 -+ y2) zrR" /1" 

(12) 
2.5. Calculation of total compression 
The total compression of the cylinder is given by 

R 0uy  d u=-2 oV > 
We shall derive this quantity for the transversely 
isotropic cylinder; the isotropic case can then 
immediately be obtained by equating particular 
compliance constants. Thus for a transverely iso- 
tropic cylinder 

~ l a T =  ,2  - o,,,  
s3a / 

where Oxx, ox~, are given by Equation 12. 
Substitution and integration gives 

u - _ lrb2 15 s33 /  

+ b = - - R :  - -b  2 sinh -x (R/b))~ 

.. . 

s3a t s3a / 
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When R > b this reduces to 

- 4 F  (s s~23 t (0.19 + sinh -1 (R/b), U - -  11 - - - -  

7"( $33 ] 
(13) 

where we take loge 2 = 0.69. 
For the isotropic case sl~ = s33 = 1/E, s~3 = 
- v ie  

1 u = zr \ E ] (0 .19+sinh -1(R/b)). 

(14) 
This result for the compression of an isotropic 
cylinder is very similar to that previously obtained 
by Fbppl [9]. He gives; 

u - 1/3 + loge �9 
/7  

For R >> b, log e (2R/b) = sinh -a (R/b) and 

u - 1/3 + sinh -~ (Rib)), 
7~ 

which is very close to Equation 14. The reason for 
the difference is due to the fact that F6ppl assumed 
a parabolic distribution of stress in the contact 
zone, whereas we have followed Hertz and assumed 
an elliptical stress distribution. 

2.6. Con tac t  width  
The Hertz solution to the contact problem [1] 
gives the following expression for the contact 
width. 

: ( 4  

The extension of this to the case of a transverely 
isotropic cylinder [3] is 

3. Experimental 
3.1. Sample preparation 
Isotropic cylinders of nylon 6.6 and linear polye- 
thylene (Rigidex) were machined from extruded 
rods obtained from Nylonic Engineering Co. Ltd. 
and B.P. Chemicals International Ltd., respectively. 
Oriented samples (~ 2 cm length x ~ 0.85 cm dia- 
meter) of nylon 6.6 and linear polyethylene were 
machined from 25mm extrudates produced by 
hydrostatic extrusion at 165~ (Abdul Jawad 
[10]) and 100~ (Gibson et al. [11] and Gibson 
[12]) respectively, using a Fielding Platt hydro- 



static extrusion machine externally operated by  an 

intensifier constructed in the Physics Department  

[12].  2.52 mm diameter  extrudates o f  linear poly- 
ethylene were a l so  used for transverse modulus 

measurements.  Before the measurements the 

samples of  nylon 6.6 were kept  under vacuum at 
125~ for ~ 7 days and then under vacuum at 
room temperature for 3 days. The molecular 
weight characteristics of  the linear polyethylene 
used are given in Table I. 

TABLE I Sample characterization 

Rigidex grade Mw Mn Mw/Mn 
50 10450 6180 16.90 
25 98 800 12 950 7.63 
140/60 67000 13350 5.02 

3 .2 .  A p p a r a t u s  a n d  m e a s u r e m e n t s  
For  small diameter extrudates (i.e. 2 .52mm)  of  
Rigidex, a compression apparatus was used similar 
to that  described previously [3].  In this apparatus 
a compression rig was installed on the stage of  a 
microscope. The test specimen was compressed 
between two blocks of  glass and the contact  zone 
was viewed in reflected light. The contact  zone 
width 2b was measured along the contact  zone 
at different points at each load in a time varying 
from 1 to 2 min. After  each measurement the 
sample was left  unloaded for about  10 times the 
loading time before applying a new load. 

For large diameter samples a "dead loading 
compression creep apparatus" was used. This 
apparatus has been described in a recent public- 
ation [13] .  The test specimen was compressed 

TABLE II Contact width 2b (cm) and total compression 
diameter = 0.85 cm) 

between two blocks of glass which were sufficiently 
thick for distortion during load/fig to be negligible, 

and were held in a compression cage between two 
sub-press plates. The loading procedure was 
followed in the same way as described previously 

[13].  The total  diametral compression was mea- 
sured by a transducer mounted on the upper press. 
The contact  width 2b was measured simultaneously 

on the same sample as follows; 
Before each experiment the surfaces of  the 

specimen and the glass blocks were cleaned. The 
upper side of the specimen was coated with a 
narrow thin film of  ink where the specimen was 
viewed in transmitted light. The contact  width 
was measured by reflecting an image of  the con- 
tact zone seen in transmitted light onto a gradu- 

ated eye piece attached to a travelfing micro- 
scope at a fixed distance from the compression 
cage. The contact  width and total  compression 

were measured simultaneously in a t ime of  10 to 
20 sec. After  each measurement the specimen was 
left unloaded for about  5 rain before applying a 
new load. The width of  the contact  zone and the 
total  compression at each load were reproducible 
within + 10%. All the measurements were carried 
out at room temperature (17 + 1 ~ C). 

4. Results 
The experimental values of  contact  width and 
total  diametral compression for isotropic nylon 
6.6 and Rigidex have been compared with those 
obtained using Equation 15 (contact  width) and 

Equation 14 (total  compression), taking the 
Young's modulus for isotropic nylon 6.6 as 1.6 

u (urn) for isotropic nylon 6.6 (specimen length = 1.89 cm, 

F 2b 2b u u 
(N cm- l ) (calculated) (measured) (calculated) (measured) 

184 0.050 0.043 -+ 0.004 57 52 + 5 
246 0.058 0.062-+ 0.005 73 66 -+ 7 
308 0.066 0.069 + 0.007 88 79-+ 8 
377 0.073 0.076 -+ 0.007 104 92 -+ 10 
431 0.077 0.08 +-0.009 110 100+ 12 

T A B L E I I I Contact width 2b (cm) and total compression u (/sin) for isotropic Rigidex 50 (specimen length = 1.99 cm; 
diameter = 1.03 cm) 

F 2b 2b u u 
(N cm-i ) (calculated) (measured) (calculated) (measured) 

176 0.052 0.05 +- 0.006 52 45 + 5 
235 0.061 0.056 +_ 0.006 67 58 + 6 
293 0.068 0.062 _+ 0.007 81 70 -+ 9 
352 0.074 0.07 -+ 0.007 95 84-+ 9 
412 0.08 0.075 -+ 0.008 108 97-+ 11 
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TABLE IV sa~ --s]3/s3~ (GNm-2) -~ for hydrostatically extruded nylon 6.6 and Rigidex 50 

Polymer Specimen dimension; length X diameter (cm) R* s ~ ~ -- s~ 3/s 33 

u 2b 

nylon 6.6 1.89 X 0.85 2 1.00 • 0.12 0.86 +- 0.1 
1.89 X 0.85 2.7 0.89 • 0.12 0.85 • 0.1 
1.89 X 0.85 3.7 0.88 • 0.12 0.87 • 0.1 

Rigidex 50 1.98 X 1.01 5.4 0.63 • 0.08 0.69 +- 0.08 
1.98 X 0.78 9.75 0.62 • 0.08 0.70 • 0.08 

*R = extrusion ratio = the ratio of the cross-sectional area of the original billet to the cross-sectional area of the 
extrudate. 

GN m -2 and for Rigidex 1.63 GN m -~ . These 

values were obtained from measurements on the 
Instron machine at room temperature and refer 
to 10 sec response at 0.1% strain. Since no measure- 
ments were made to find the Poisson's ratio for 
isotropic nylon 6.6 and Rigidex it was assumed to 
be 0.35 in both cases. The value assumed for 
Poisson's ratio is not  critical, and if this value is 
incorrect it  will introduce only a very small error 
in the calculated values of u, and 2b. 

The calculated and measured values of  u and 
2b are given in Tables II and III for isotropic 
nylon 6.6 and Rigidex respectively. For  extruded 
samples of nylon 6.6 and Rigidex the quanti ty 

s11 -- s~3/s33 calculated from the contact  width 
and total compression measurements is given in 
Table IV. 

Equation 16 may be written as 

b2 = 4 F R  ( s l l _  (S1.33t2 ] ( t7 )  
lr s33[s33 \s33j )" 

Assuming Su/S33 >> (s13/s33) 2 for highly extruded 
samples, the transverse modulus 1/s~l was calcu- 
lated for small diameter extrudates (~  2.5 mm) of  
hydrostat ical ly extruded Rigidex. The results are 
shown in Fig. 2. 

5. Discussion 
It can be seen from Tables II and III that  the com- 
parison between experiment and theory for iso- 
tropic nylon 6.6 and Rigidex is good. Reproduc- 
ibili ty of  contact  width and total  compression was 
generally about - 10%. Table IV shows that there 
is good agreement between the values o f  Sll - -  
s~3/s33 from contact  width and total  compression 
measurements. These results show that the pro- 
posed theoretical extension of  the Hertz contact  
solution to a transversely isotropic cylinder is 
valid to a good degree of  approximation.  

~ 1 " 6  

E 
1.,4 

r 

12 

li L 

$ 

1"0 5 1 25 

Extrusion rat io 

Figure 2 Transverse modulus as a function of extrusion 
ratio for hydrostatically extruded linear polyethylene. 
�9 Rigidex 50, �9 Rigidex 25, �9 140/60 grade. 

In view of  the interest in ultra-high modulus 
oriented polyethylene the results shown in Fig. 
2 are worthy of  comment.  It appears that  the 
transverse modulus of  linear polyethylene decreases 
slightly with increasing extrusion ratio. This result 
is consistent with that found previously [3] for 
drawn linear polyethylene at lower draw ratios. It 

is of  particular interest to note the small change 
in the transverse modulus compared with the 
change in the Young's modulus, which increases 
by  a factor of  twenty over the same range of draw 
ratios [11] .  The final significance of  this result 
will be discussed elsewhere, in the light of inform- 
ation from structural studies of  these materials. 
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